If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-49x^2+50x+90=0
a = -49; b = 50; c = +90;
Δ = b2-4ac
Δ = 502-4·(-49)·90
Δ = 20140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20140}=\sqrt{4*5035}=\sqrt{4}*\sqrt{5035}=2\sqrt{5035}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-2\sqrt{5035}}{2*-49}=\frac{-50-2\sqrt{5035}}{-98} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+2\sqrt{5035}}{2*-49}=\frac{-50+2\sqrt{5035}}{-98} $
| 28-p=3p+12 | | 2(3)-3y=-9 | | 8a=6(a | | (X*y)+5=41 | | -5(-4)+4y=18 | | x^2+21x+62=0 | | 0.10=0.20x10 | | 8m+-9=71 | | P(x)=-2x+7 | | 2(10x-3)-7=13 | | 5a–7=19, | | (7-3x)2=9/16 | | -94=8+3(1+5n) | | -6(1+3m)=102 | | 8=v-2-6v | | 198=6(8x-7) | | 4j+9=13 | | 3(1+5b)=-102 | | h(1.5)=8 | | 2+6(4k-1)=92 | | g(1.5)=3.5 | | 3.8t= | | z=12=-3 | | 6x-36=2x+6 | | -4=2{p-2} | | 0=4+4{m+} | | 8x+34+86+14x+92=180 | | 4/l+11=15 | | 9y-13=25 | | 2,5x1,8=0.9x+3 | | Y=6(2x+5) | | 5w=-7-36 |